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TRAVELING WAVE WITH ALLOWANCE

FOR EQUILIBRIUM RADIATION

UDC 533.6.011.51S. P. Bautin and A. P. Sadov

Three modes of propagation of a traveling-wave front over a noncold gas with different propagation
velocities are found using one thermodynamic model. When the indicated velocity is low, transition
from constant values of the gas parameters on both sides of the traveling-wave front proceeds con-
tinuously. An increase in the traveling-wave velocity leads to an isothermal jump: the density and
velocity of the gas undergo a strong discontinuity whereas the temperature varies continuously. With
a further increase in the traveling-wave velocity, the isothermal jump disappears and the flow becomes
continuous again.
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Obtaining high gas compression ratios is of great importance in solving many engineering problems (see, for
example, [1]). In the case of great compression of gases, it is necessary to take into account equilibrium radiation
[1–3]. In this case, the gas equations of state for the become

p = RρT + σT 4/3, e = cvT + σT 4/ρ, σ = const > 0. (1)

Here p is the pressure, ρ is the density, T is the temperature, e is the internal energy, cv is the specific heat capacity
at constant volume, R is the gas constant, σ is a constant related to the Stefan–Boltzmann constant σ∗ by the
formula σ = 4σ∗/c∗, where c∗ is the velocity of light in vacuum.

A gas treated as a thermodynamic system is a two-parameter continuous medium [4, 5]. The gas density
and temperature are considered independent thermodynamic variables. Therefore, the remaining thermodynamic
parameters of the gas are functions of ρ and T , as for example, the pressure and internal energy given by relations (1).

If equilibrium radiation is taken into account in the equations of gas dynamics [4], the equation expressing
the differential form of the energy conservation law becomes a nonlinear heat-conduction equation in a moving
medium [5] and the heat conductivity becomes

κ = 2
σc∗α∗
γ − 1

T 3

ρ
(2)

(α∗ is a positive constant that depends on the choice of a system of units and γ − 1 = R/cv > 0 is the polytropic
exponent of an ideal gas).

Plane–parallel flows of a heat-conducting inviscid gas with the equations of state (1) and the heat conductivity
(2) are described by the equations

ρt + uρx + ρux = 0,

ut + uux + [Tρx + (ρ + σ1T
3)Tx]/(γρ) = 0, (3)

(ρ + σ2T
3)(Tt + uTx) + (γ − 1)T (ρ + σ1T

3)ux = κ0
∂

∂x

(T 3

ρ

∂T

∂x

)
.
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Here t is time, x is the spatial coordinate, u is the gas velocity,

σ1 =
4
3

σ
T 3

00

Rρ00
, σ2 = 3(γ − 1)σ1, κ0 =

2σc∗α∗T 3
00

Ru00ρ2
00x00

,

and T00, ρ00, and x00 are the scale values of the temperature, density, and distance, respectively, for the variables
made dimensionless in a standard manner. In this case, the scale value of the gas velocity is the sound velocity in
a non-heat-conducting ideal gas: u00 =

√
RγT00.

The physical mechanism of radiative heat conduction differs from the mechanism of molecular heat con-
duction. In particular, in accounting for molecular heat conduction, it is necessary to take into account molecular
viscosity because these effects are commensurable. This is suggested by the final value of the Prandtl number
Pr = cvγµ00/κ00, which is the ratio of the viscosity µ00 to the heat conductivity κ00 calculated for the scale values
of ρ00 and T00. For example, for air, it common to set Pr = 0.72. In contrast to molecular heat conduction,
the radiative heat conduction mechanism does not assume the occurrence of the viscosity effect in gas [1, 2, 6].
Therefore, system (3) does not contain terms due to the viscous interaction of gas particles. Formally, system (3) is
obtained from the complete Navier–Stokes system (see, for example, [7]), in which one needs to take into account
the particular types of the equations of state (1) and the heat conductivity (2) and to set the first and the second
viscosity coefficients equal to zero.

If one sets κ0 = 0 in system (3), it becomes a hyperbolic system of gas-dynamic equations. Because ρ and
T are chosen as independent thermodynamic variables and the energy equation is written for temperature, system
(3) for κ0 = 0 differs in form from the traditional system of gas-dynamic equations [4] but, naturally, these systems
are equivalent. The propagation velocity of the sound C±-characteristics relative to the flow is determined by the
sound velocity in a non-heat-conducting inviscid gas c. If p = p(ρ, T ) and e = e(ρ, T ), the sound velocity in a
non-heat-conducting inviscid gas is specified by the relation

c =

√
∂p(ρ, T )

∂ρ
+

T

ρ2

[∂p(ρ, T )
∂T

]2/ ∂e(ρ, T )
∂T

. (4)

In view of the equations of state (1), the formula specifying the sound velocity in the non-heat-conducting gas (i.e.,
for κ0 = 0) is written as

c =

√
T

γ

√
1 + (γ − 1)

(1 + σ1T 3/ρ)2

1 + σ2T 3/ρ
. (5)

In the case of κ0 �= 0, system (3) is of a mixed type: the first two equations form a hyperbolic part, and the
last equation is parabolic. For this system, there are two sound C±

κ
-characteristics [8] whose propagation velocity

relative to the flow is equal to the sound velocity in the heat-conducting inviscid gas cκ:

cκ =

√
∂p(ρ, T )

∂ρ
. (6)

In the case of the equations of state (1), this quantity in dimensionless variables is given by the relation

cκ =
√

T/γ. (7)

In the literature (see, for example, [2, 6, 9]) the quantity (6) is referred to as the isothermal sound velocity. We
note, however, that the quantity

√
∂p(ρ, T )/∂ρ determines the sound velocity in flows of heat-conducting inviscid

gases irrespective of whether the flow temperature is constant or variable.
Because ∂e(ρ, T )/∂T > 0 for ordinary gases, a comparison of formulas (4) and (6) leads to the inequality

c > cκ . (8)

It is natural that inequality (8) is also satisfied in the particular case of the equations of state (1), where c and cκ

are specified by formulas (5) and (7), respectively.
Next, we consider the particular case of solutions of system (3): waves traveling over a noncold gas —

solutions that depend on one independent variable

z = x − Dt, D = const > 0; (9)
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in this case, in the region z → +∞, there is a homogeneous quiescent gas with the following gas-dynamic parameters:

ρ|z→+∞ = 1, u|z→+∞ = 0, T |z→+∞ = T0 > 0. (10)

The constant D specifies the velocity of the traveling wave that propagates from left to right.
Traveling waves in a heat-conducting (κ0 �= 0) inviscid gas have been considered previously. For an ideal

heat-conducting gas, for which σ = 0 in relations (1) but κ0 �= 0, the cases T0 = 0 (cold background) and T0 > 0
have been considered. It has been shown [10] that flow with an isothermal jump occurs in an infinitely strong wave
at T0 = 0. At a certain point of this flow there is a discontinuity of the density, gas velocity, and heat flux but the
temperature varies continuously over the entire flow [2, 5, 6, 9]. For the case T0 > 0, it has been established [2, 5, 6]
that a continuous transition occurs for small D and an isothermal jump for large D.

Traveling waves in a heat-conducting gas with the equations of state (1) (i.e., for σ �= 0 and κ0 �= 0) at
T0 = 0 are considered in [2, 9]. It has been shown that an isothermal jump occurs for small D and a continuous
transition for large D, and, in addition, the following relation is valid:

lim
T1→+∞

ρ1

ρ0
= 7, (11)

where ρ1 and ρ0 are the densities on the opposite sides of the infinitely strong traveling wave.
Unlike in the papers cited above, in the present paper, we study traveling waves at T0 > 0 for the equations

of state (1) with σ �= 0 and κ0 �= 0.
To analyze the properties of the waves traveling over a noncold background, we consider the system of

ordinary differential equations

(u − D)ρ′ + ρu′ = 0,

(u − D)u′ + [Tρ′ + (ρ + σ1T
3)T ′]/(γρ) = 0, (12)

(ρ + σ2T
3)(u − D)T ′ + (γ − 1)T (ρ + σ1T

3)u′ = κ0(T 3T ′/ρ)′,

which is obtained from system (3) using the substitution (9).
The first three integrals of system (12) are found in a standard way [5]:

ρ(u − D) = C1; (13)

Tρ + σ1T
4/4 = γDu + C2; (14)

κ0T
3T ′/ρ = γ(γ − 1)Du2/2 + (γ − 1)C2u − DT − σ2(D − u)T 4/4 + C3. (15)

Relations (13)–(15) are Hugoniot conditions for a heat-conducting inviscid gas [2, 5, 6], which can also be obtained
from the integral conservation laws [5]. The left side of condition (15), which is one of the forms of the energy
conservation law, contains the heat flux, which depends, in particular, on the temperature gradient, according to
the Fourier law for heat conduction. If we set κ0 = 0 or T ′ = 0 in (15), the traditional Hugoniot conditions for a
non-heat-conducting inviscid gas [4, 5] become.

The arbitrary constants C1, C2, and C3 are unequally determined from conditions (10). Next for the sake
of illustration, we set

T0 = 1,

Therefore,

C1 = −D, C2 = 1 + σ1/4, C3 = D(1 + σ2/4). (16)

Integral (13) allows us to eliminate ρ from integral (14) and to obtain the relation

u±(T ) = [γD2 + σ1T
4/4 − (1 + σ1/4) ±

√
W (T ) ]/(2γD), (17)

where

W (T ) = [σ1T
4/4 − (γD2 + 1 + σ1/4)]2 − 4γD2T.

The function W (T ) has two positive roots T∗ and T∗∗ (0 < T∗ < T∗∗), and it is strictly positive for 0 ≤ T < T∗
and T > T∗∗ and is strictly negative for T∗ < T < T∗∗. Since the function

√
W (T ) is not defined in the range
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Fig. 1. Double-valued temperature dependence of the heat flux q±.

T∗ < T < T∗∗, it is necessary to examine only the interval 0 ≤ T ≤ T∗. It is in this range that the double-valued
function u = u±(T ) is defined. The value of the derivative du±(T )/dx is calculated by the formula

du±(T )
dx

=
du±(T )

dT

dT

dx
=

1
2γD

[
σ1T

3 ± W ′(T )
2
√

W (T )

] dT

dx
.

Thus, at the point T = T∗, where W (T∗) = 0, the value of the derivative du±(T )/dx is obviously equal to infinity
although the gas velocity at T = T∗ is finite.

From formulas (13) and (17), it follows that the dependence

ρ = ρ±(T ) ≡ D/(D − u±(T )) (18)

is defined in the half-interval (0, T∗] and is also double-valued.
The obtained dependences (17) and (18) allow the gas density to be eliminated from the left side of relation

(15) and the gas velocity from the right side of relation (15), which is denoted below as

q±(T ) = γ(γ − 1)Du2
±(T )/2 + (γ − 1)(1 + σ1/4)u±(T )

−DT − σ2[D − u±(T )]T 4/4 + D(1 + σ2/4). (19)

In this case, q−(1) = 0, q−(T∗) = q+(T∗) and q−(T ) < q+(T ) at 0 ≤ T < T∗. As z → +∞, the limiting values of the
gas density ρ = 1 and the gas velocity u = 0 belong to the lower branches of the corresponding curves ρ±(T ) and
u±(T ) for T = 1; therefore, the zero value of the heat flux for T = 1 also belongs to the lower branch of the curve of
q±(T ). Figure 1 gives a curve of q±(T ) for D = 5 and the following values of the constants: γ = 5/3, κ0 = 1.4842,
and σ1 = 0.2366. (The same values of the constants are used below.)

Let

D0 = c(ρ, T )|ρ=T=1,

where c(ρ, T ) is calculated by formula (5). In the case considered, D0 ≈ 1.00757. For D = D0 for the curve of
q±(T ), the value of T = 1 is a root of multiplicity two, which belongs to the lower branch: q−(1) = 0, q′−(1) = 0.

For D > D0, the second root T = T1 > 1 appears on the curve q±(T ). It is first located on the lower
branch [q−(T1) = 0] but as D increases, it passes to the upper branch [q+(T1) = 0], and then returns to the lower
branch again. The location of the root T = T1 on the different branches of the curve of q±(T ) leads to substantially
different gas flows: flow without a strong discontinuity or flow with a strong discontinuity.

Let the root T = T1 > 1, as well as the root T = 1, be located on the lower branch: q−(T1) = 0. Then, the
solution of the Cauchy problem for the ordinary differential equation

κ0T
3T ′/ρ−(T ) = q−(T ), T |z=0 = T 0 (20)
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Fig. 2. Continuous distribution of the gas density in the first mode.

Fig. 3. Continuous distribution of the gas density for transition from the first to the second mode.

yields the dependence T = T (z) for −∞ < z < +∞. Here the value of the constant T 0 should be chosen in the
interval of 1 to T1, for example, T 0 = (1 + T1)/2.

Because the differential equation is cumbersome, the problem (20) is solved numerically. In this case, the
limiting values T |z=−∞ = T1 and T |z=+∞ = 1 are approached rather rapidly. For fixed values of the parameters γ,
κ0, and σ1, the rate of this approach depends on the constant D.

Once the dependence T = T (z) is determined, the functions u = u(z) ≡ u−(T (z)) and ρ = ρ(z) ≡ ρ−(T (z))
are found from formulas (17) and (18) with the minus sign. Figure 2 shows the dependence ρ(z)|t=0 = ρ(x) found by
the indicated method for D = 1.1. The curves of u(z)|t=0 = u(x) and T (z)|t=0 = T (x) are qualitatively similar to
the curve of ρ(z)|t=0 = ρ(x). In this case, the traveling wave, as well as Becker’s [5] solution, describes a monotonic
shockless transition from the limiting values ρ = ρ1 ≈ 1.1430, u = u1 ≈ 0.1376, and T = T1 ≈ 1.0776 for z = −∞
to the limiting values ρ = 1, u = 0, and T = 1 for z = +∞.

Once a certain value D = D1 > D0 is reached, the root T = T1 takes the boundary position, i.e., it belongs
simultaneously to both branches of the curve of q±(T ): q−(T1) = q+(T1) = 0. Naturally, this takes place only in
the case where the root T1 coincides with the boundary point of the range of definition of the functions q±(T ),
ρ±(T ), and u±(T ): T1 = T∗. Since the root T1 is on the lower branch, the transition from the values ρ0 = 1,
u0 = 0, and T0 = 1 to the values ρ1, u1, and T1 occurs continuously but for infinite values of the derivatives of the
gas density and velocity with respect to the variable z on the left boundary of the smeared shock wave. In this
case, since q−(T1) = 0, the derivative T ′(z) is continuous and on the left boundary of the smeared shock wave, it is
equal to zero. For the version used, the following values of the constants are obtained: D1 ≈ 1.366, T∗ ≈ 1.289702,
ρ1 = ρ−∞ ≈ 1.5520, u1 = u−∞ ≈ 0.4859, and T1 = T−∞ ≈ 1.2897. The behavior of the curve of ρ|t=0 = ρ(x) for
this case is given in Fig. 3.

With a further increase in D, the root T = T1 passes to the upper branch of the curve of q±(T ): q+(T1) = 0.
In this case, as z decreases, the function T (z) takes the value T = T1 for a certain finite value z = z1. At the
point z = z1, the quantities q, ρ and u must satisfy the strong discontinuity condition — transition from the values
q = q2 = q−(T1), ρ = ρ2 = ρ−(T1), and u = u2 = u−(T1) to the values q = q1 = q+(T1), ρ = ρ1 = ρ+(T1),
and u = u1 = u+(T1), respectively. For this discontinuous transition from the lower to the upper branches, all
conservation laws (13)–(15) are satisfied since the dependences ρ±(T ), u±(T ), q±(T ) are defined for the same
set (16) of constants C1, C2, and C3.

Since q+(T1) = 0, the solution of the Cauchy problem

κ0T
3T ′/ρ+(T ) = q+(T ), T |z=z1 = T1

for −∞ < z < z1 is the constant temperature value T = T1, which leads to the constant values of the gas parameters:
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Fig. 4. Isothermal density jump in the second mode.

ρ = ρ1 > 1, u = u1 > 0, and T = T1 > 1. Figure 4 gives the dependence ρ|t=0 = ρ(x) for the values of the constants
γ, κ0, σ1, and D = 5. In this version, ρ1 ≈ 4.7416 > ρ2 ≈ 2.2016 > ρ0 = 1, u1 ≈ 3.9455 > u2 ≈ 2.7289 > u0 = 0,
T1 ≈ 3.9915 > T0 = 1, and T∗ ≈ 4.0934. In this case, the temperature varies continuously: T (z) = T1 for z ≤ z1;
for z ≥ z1, the function T (z) decreases monotonically from T1 to unity with increasing z. The dependence T (z)
behaves the same as ρ(z) for D = 1.366 (see Fig. 3): at the point z1, the derivative T ′(z) has a discontinuity but
there is no infinite gradient.

The flow ahead of the shock transition considered is called a thermal precursor. In the case where the
temperature of the gas in rest is equal to zero (for z = +∞), the traveling wave becomes a wave that propagates
at a finite velocity over the cold gas [1, 2, 9, 10]. Then, the width of the thermal precursor is finite: from z = z1 to
z = z0 > z1, where z0 is the coordinate of the thermal-wave front.

In the present paper, we consider the version T |z→+∞ > 0. Therefore, in the cases studied, the thermal
heterogeneity propagates at an infinite velocity and the width of the thermal precursor is infinite: from z = z1 to
z = +∞. However, as noted above, the approach of the gas parameters in the thermal precursor to the limiting
values for z → ±∞ is rather fast (see Figs. 2–4).

For D > D1, the root T = T1 again passes from the branch q+(T ) to the branch q−(T ) and there is a
boundary situation: for a certain D = D2 > D1, the root T = T1 coincides with the boundary point of the range
of definition of the curve q±(T ) and belongs simultaneously to both branches: q+(T∗) = q−(T∗) = 0. In this case,
as well as for D = D1, a strong discontinuity in the gas flow is absent. On the left boundary of the smeared shock
wave, the derivatives of the density and velocity with respect to the space variable are infinite and the derivative
T ′(z) is continuous and vanishes at the point T∗ = 0. For the values of the constants used in the calculations,
D1 ≈ 13.675. The curve ρ|t=0 = ρ(x) in this case behaves the same as that in Fig. 3 but the value of ρ1 is larger.

With a further increase in D (D > D2), a strong discontinuity disappears and the traveling wave, as in the
case of D0 < D < D1, transfers the smeared shock transition with the values of the gas parameters for z = −∞.

Thus, in the case σ �= 0, κ0 �= 0, T0 > 0, there are three traveling wave modes: a continuous transition for
D0 < D ≤ D1, an isothermal jump for D1 < D < D2, and a continuous transition for D2 ≤ D.

The values of the gas parameters on the different sides of the traveling wave

U0 = U |z→+∞, U1 = U |z→−∞, U = (ρ, u, T )

are related by the Hugoniot conditions (13)–(15); since in the examined flows, lim
z→±∞ T ′ = 0, these conditions

coincide with the Hugoniot conditions for a non-heat-conducting inviscid gas [4]. Therefore, in particular, the
determinateness theorem [4] is valid. According to this theorem, the values of U1 are uniquely determined from the
values U0 and D irrespective of whether in the heat-conducting gas flow there an isothermal jump or not. Because
an isothermal jump is absent for D0 < D < D1 and at D2 < D, the gas-dynamic parameters in the examined
traveling waves for these values of D change continuously and monotonically from the values U1 = U |z→−∞ to the
values U0 = U |z→+∞, which are related by the Hugoniot conditions for a non-heat-conducting inviscid gas.
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Fig. 5. Gas density on the different sides of the traveling-wave front (ρ+∞ = 1 and ρ−∞ = ρ1)
and in the isothermal jump (ρ2–ρ1); ρ = 7 is the limiting value of the density change in the wave
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Fig. 6. Gas velocity on the different sides of the traveling-wave front (u+∞ = 0 and u−∞ = u1) and
in the isothermal jump (u2–u1).

Because for D1 < D < D2, there is an isothermal jump in the gas flow, it follows, first, that the temperature
for z ≤ z1 is constant (T = T1), and for z ≥ z1, the temperature varies continuously and monotonically from the
value T1 = T |z=z1 to the value T0 = T |z→+∞. Second, the gas density and velocity behave differently: in the
thermal precursor with decreasing z (from +∞ up to z1), they change monotonically and continuously from the
values ρ0 = ρ|z→+∞ and u0 = 0 = u|z→+∞ to the values ρ2 = ρ−(T1) > ρ0 and u2 = u−(T1) > 0, respectively,
at the point z = z1; then, at the point z = z1, there is a sudden transition to the values ρ1 = ρ+(T1) > ρ2 and
u1 = u+(T1) > u2, respectively. Next, on the entire semiaxis (−∞, z1], the gas density and velocity are constant:
ρ = ρ1 and u = u1. For the chosen values of the constants γ, κ0, and σ1, curves of ρ1(D) and ρ2(D) are given in
Fig. 5, and curves of u1(D) and u2(D) in Fig. 6.

For a non-heat-conducting inviscid gas, the Zemplén theorem [4, 5] for shock waves is valid:

|u0 − D| > c0, |u1 − D| < c1. (21)

According to this theorem, the shock-wave front catches up with the weak perturbations that arise ahead of it and
the weak perturbations available behind the shock-wave front, in turn, catch up with it. In the literature, this
property is sometimes referred to as the evolutionarity property [6].

Naturally, if for the specified values of U0, U1 and D, the sound velocity is calculated by formulas (4) and
(5) (i.e., in the case of a non-heat-conducting gas with κ0 = 0), the Zemplén theorem holds. However, if the sound
velocity is calculated by formulas (6) and (7), which is valid for heat-conducting inviscid gas flows, it is not known
a priori whether such flows possesses the evolutionarity property. Moreover, direct calculations of the quantities
(21) using the sound velocity in a heat-conducting inviscid gas as the sound velocity give a peculiar picture of the
feasibility of the evolutionarity property for the waves traveling over the noncold background in a heat-conducting
inviscid gas.

For the flow ahead of the traveling-wave front with allowance for the value u0 = 0 the evolutionarity property
is written as

D > cκ(ρ0, T0)

and holds. Indeed, under the Zemplén theorem, D > c(ρ0, T0). Then, in view of relation (8), we obtain the chain
of inequalities

D > c(ρ0, T0) > cκ(ρ0, T0),
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which implies the evolutionarity of the flow ahead of the traveling-wave front. It should be noted that the need
to satisfy the Zemplén theorem in the case of a non-heat-conducting gas [D > c(ρ0, T0)] determines the value
D0 = c(ρ0, T0).

For the heat-conducting inviscid gas flow behind the traveling-wave front, calculations for the employed
values of the parameters γ, κ0, and σ1 show the following. If in the gas flow there is an isothermal jump (i.e.,
D1 < D < D2), then

cκ(ρ1, T1) > D − u1,

i.e., the Zemplén theorem is satisfied and the evolutionarity property holds. However, if the heat-conducting inviscid
gas flow in the traveling wave is continuous (D0 < D < D1 and D2 < D), the following inequality is valid:

cκ(ρ1, T1) < D − u1; (22)

consequently, weak discontinuities that for some reasons arise behind the traveling wave front may not catch up
with the wave front.

The fact is that system (3) takes into account two mechanisms of perturbation transfer: elastic interaction
and radiative heat conduction. As is known, in the case of a background with nonzero temperature, the thermal
heterogeneity propagates at an infinite velocity. Exactly this circumstance is responsible for the infinite width of
the thermal precursor ahead of the traveling wave front (see Figs. 2–4). Consequently, the presence of the thermal
conduction mechanism causes heating of the gas and a rise in the temperature, which, in turn, leads to an increase
in the sound velocity in the heat-conducting inviscid gas. Therefore, generally speaking, in spite of the validity of
inequality (22), weak perturbations can catch up with the traveling wave front.

However, there are examples of flows (see [8, 11]) where weak perturbations produced by a smooth dis-
placement of an impermeable piston in a homogeneous gas of nonzero temperature propagate over a homogeneous
background at a constant velocity cκ and do not lead to an infinite propagation velocity of the thermal heterogene-
ity. This effect arises when on the compressing piston there is a heat drain under a special law. These examples
suggest that for D0 < D < D1 and D2 < D, the evolutionarity property in heat-conducting inviscid gas flows may
not be satisfied.

Next, we consider the influence of T0 on the gas flow. As noted above, the value of T0 = 1 is chosen only for
a better visualization of calculation results. The values of the constants for T0 = 1 [2, 12] used in the calculations
correspond to a temperature of about 1 keV, i.e., 107 K. Obviously, in laser thermonuclear fusion experiments, this
temperature is attained not on the target in the initial state but in the already compressed gas heated to a very
high temperature.

Calculations for values of T0 decreasing to T0 = 10−6 K showed that for T0 > 0 there are three modes of
traveling-wave propagation: a continuous flow for D0(T0) < D < D1(T0) and D2(T0) < D and an isothermal jump
for D1(T0) < D < D2(T0). In this case, if the value of T0 decreases to zero, then D0,1(T0) → 0 and

D2(T0) → D2∗ =
[ (8 + 4s)(4 + s)7

σ1γ3

]1/6

, s =
√

3γ − 1
γ − 1

.

Consequently, in the limit as T0 → 0, the three modes continuously become two modes for the waves traveling over
a cold background [2, 9]. This occurs because the range of values D for which the first continuous-flow mode occurs
(D0 < D < D1) decreases to zero as T0 → 0.

In all calculated versions for T0 > 0, the evolutionarity property is manifested up in the same manner as in
the case T0 = 1: for the flow ahead of the wave front, and for the flow behind the front, but inequality (21) with
cκ taken as the sound velocity holds only in the presence of an isothermal jump. In the cases of continuous profiles
of gas-dynamic parameters in the traveling wave, inequality (22) holds.

The literature (see, for example, [2]) gives values of the gas parameters (temperature, transparency boundary,
etc.,) for which thermal radiation becomes significant for both the flow ahead of the shock transition and the flow at
and behind the shock-wave front. It seems that the solutions constructed and the values of the constants introduced
(in particular, for T0 → 0) allow the validity of using the radiative heat conduction approximation to be determined
for different versions. In addition, in using the equilibrium radiation model, it is necessary to take into account that
for σ → 0, the limiting transition in relations (1)–(3) does not lead to the corresponding transition of the solutions
with σ �= 0 to the solutions with σ = 0 [see, for example, formulas (5) and (7)].
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